Einzigartige Einblicke durch Graphdatenbanken

Mit dem Einsatz von Graphdatenbanken erhalten Sie Einblicke, die Ihrem Unternehmen einen echten Wettbewerbsvorteil verschaffen können.

Hinweis: Dieser Blogbeitrag stammt aus der Zeit vor dem Zusammenschluss und wurde von X-INTEGRATE realisiert – heute Teil von ATVANTAGE. Unsere Erfahrung bleibt – nur unser Name hat sich geändert. Hier finden Sie weitere Informationen rund um die Fusion.

Neue Möglichkeiten erschließen mit Graphdatenbanken

In der sich ständig weiterentwickelnden Technologielandschaft sind Unternehmen fortwährend auf der Suche nach innovativen Lösungen, um an der Spitze zu bleiben. Eine solche Neuerung ist der Einsatz von Graphdatenbanken. Lassen Sie uns einen Blick auf die immensen Möglichkeiten werfen, die Graphdatenbanken bieten.

Die Leistungsfähigkeit von Graphdatenbanken

Graphdatenbanken sind im Gegensatz zu herkömmlichen relationalen Datenbanken so konzipiert, dass die Beziehungen zwischen den Daten genauso wichtig sind wie die Daten selbst. Diese Struktur ermöglicht leistungsstarke Abfragen und macht sie ideal für die Verwaltung miteinander verbundener Daten.

Von sozialen Netzwerken bis zu Empfehlungsmaschinen und von der Betrugserkennung bis zu Wissensgraphen - Graphdatenbanken verändern die Art und Weise, wie wir Daten verstehen und nutzen. Sie bieten die Möglichkeit, Muster aufzudecken, die mit herkömmlichen Datenbanken nur schwer zu erkennen sind, und verschaffen Unternehmen so einzigartige Einblicke und Wettbewerbsvorteile.

Generative KI mit RAG und Graphdatenbanken

Eine der jüngsten Anwendungen von Graphdatenbanken liegt im Bereich der generativen KI. Insbesondere Retrieval-Augmented Generation (RAG)-Modelle können Graphdatenbanken als Wissensspeicher nutzen.

Wenn es darum geht, die Leistungsfähigkeit großer Sprachmodelle (wie GPT) in einem geschäftlichen Umfeld nutzbar zu machen, stoßen wir häufig auf zwei Haupthindernisse:

  • Erstens, das Problem der "Halluzinationen", bei denen das Modell Informationen erzeugt, die nicht auf realen Daten beruhen.
  • Zweitens, die fehlende Kenntnis des Modells über Ihre unternehmensspezifischen Daten.

Die gute Nachricht ist, dass diese beiden Herausforderungen durch den Einsatz einer Graphdatenbank effektiv bewältigt werden können. Indem Sie Ihre einzigartigen Daten in der Graphdatenbank speichern, können Sie die Sprachfähigkeiten der großen Sprachmodelle nutzen, um hochwertige Ergebnisse zu erzeugen. Dieser Ansatz basiert auf realen Daten und macht komplexere und weniger effektive Methoden wie Fine-Tuning oder In-Context-Learning überflüssig.

RAG-Modelle vereinen das Beste aus den beiden Welten von Retrieval-basierten und generativen Modellen. Sie rufen relevante Dokumente aus einem Wissensspeicher ab und verwenden diese, um ein generatives Modell zu informieren. Handelt es sich bei dem Wissensspeicher um eine Graphdatenbank, kann das Modell effizient durch die miteinander verknüpften Daten navigieren und hochrelevante Informationen abrufen. Dies führt zu präziseren, kontextabhängigen Antworten und eröffnet neue Möglichkeiten für KI-Anwendungen.

Quelle: Neo4j 2023 (GenAI Stack Walkthrough: Build With Neo4j, LangChain & Ollama in Docker)

Graph Data Science: Eine neue Grenze

Graphdatenbanken ebnen auch den Weg für Graph Data Science (GDS). Dieses aufstrebende Gebiet konzentriert sich auf die Nutzung der Graphentheorie, um komplexe Systeme zu verstehen und anspruchsvolle Probleme zu lösen.

Durch die Darstellung von Daten als Knoten (Entitäten) und Kanten (Beziehungen) ermöglicht die Graphdatenwissenschaft die Analyse von Beziehungen und Mustern innerhalb der Daten. Dies kann zu genaueren Vorhersagen, besserer Entscheidungsfindung und tieferen Einsichten führen. Von der Erkennung von Gemeinschaftsstrukturen in Netzwerken bis hin zur Vorhersage von Proteininteraktionen in der Bioinformatik - die Graphdatenwissenschaft wird zahlreiche Branchen revolutionieren.

GDS verwendet eine Vielzahl von Graph-Algorithmen, um Erkenntnisse aus Daten zu gewinnen. Dazu gehören:

Wegfindungs- und Suchalgorithmen

wie Dijkstra und A*, die den kürzesten Weg zwischen zwei Knotenpunkten finden können. Diese Algorithmen sind bei Logistik- und Routing-Problemen nützlich.

Zentralitätsalgorithmen

wie PageRank und Betweenness Centrality, die einflussreiche Knoten in einem Netzwerk identifizieren können. Diese Algorithmen werden häufig bei der Analyse sozialer Netzwerke und bei der Suchmaschinenoptimierung eingesetzt.

Algorithmen zur Erkennung von Gemeinschaften

wie Louvain Modularity und Label Propagation, die Cluster oder Gemeinschaften innerhalb eines Netzwerks identifizieren können. Diese sind nützlich, um die Struktur eines Netzwerks zu verstehen und Anomalien zu erkennen.

Schlussfolgerung

Die Einführung von Graphdatenbanken bietet eine Fülle von Möglichkeiten. Indem sie eine effizientere Datenverwaltung ermöglichen, die generative KI verbessern und das neue Feld der Graphdatenwissenschaft vorantreiben, werden Graphdatenbanken eine zentrale Rolle in der Zukunft der Technologie spielen. Gartner prognostiziert, dass "bis 2025 Graph-Technologien bei 80 % der Daten- und Analytics-Innovationen zum Einsatz kommen werden, gegenüber 10 % im Jahr 2021, und damit die schnelle Entscheidungsfindung im gesamten Unternehmen erleichtern" werden (Quelle: Gartner "Market Guide: Graph Database Management Solutions" Merv Adrian, Afraz Jaffri 30. August 2022). Als Software-Beratungsunternehmen sind wir bestens dafür aufgestellt, Unternehmen dabei zu helfen, diese Möglichkeiten zu nutzen und Innovationen voranzutreiben.

Über die Autoren: Elena Kohlwey & Matthias Bauer

Elena Kohlwey ist seit 2024 als Data Scientist und Data Engineer bei der X-INTEGRATE (Teil der TIMETOACT GROUP) und bringt mehr als 5 Jahre Expertise als Graphdatenbank-Expertin mit. Ihre Mission ist es, vernetzte Daten als Graph zu modellieren und mit Graphabfragen und -algorithmen tief versteckte Erkenntnisse zur Oberfläche zu befördern. Elena ist seit Jahren sehr aktiv in der Neo4j (Graphdatenbankanbieter) Community. Dabei referiert sie regelmäßig auf Konferenzen über Graphthemen und gehört auch zu den weltweit ca. 100 aktiven Neo4j Ninjas.

Matthias Bauer ist seit 2020 als Teamlead Data Science bei der X-INTEGRATE (Teil der TIMETOACT GROUP) und bringt mehr als 15 Jahre Expertise als Solution Architect mit. Daten dafür nutzen, Großes zu schaffen und Mehrwerte zu erzielen – in seinen Worten: Data Thinking – ist seine Leidenschaft. Matthias ist erfahren in Artificial Intelligence, Data Science und Data Management; dabei bedient er von Data Warehousing bis hin zu Data Virtualization ein breites Spektrum an datenbezogenen Fragestellungen.  

Elena Kohlwey
Data Scientist & Data Engineer X-INTEGRATE Software & Consulting GmbH
Matthias Bauer
CTO "Data Analytics & AI" ATVANTAGE GmbH

Sprechen Sie uns gerne an!

* Pflichtfelder

Wir verwenden die von Ihnen an uns gesendeten Angaben nur, um auf Ihren Wunsch hin mit Ihnen Kontakt im Zusammenhang mit Ihrer Anfrage aufzunehmen. Alle weiteren Informationen können Sie unseren Datenschutzhinweisen entnehmen.

Bitte Captcha lösen!

captcha image
Wissen 20.03.24

Einzigartige Einblicke durch Graphdatenbanken

Mit dem Einsatz von Graphdatenbanken erhalten Sie Einblicke, die Ihrem Unternehmen einen echten Wettbewerbsvorteil verschaffen können.

Blog 23.07.24

Graphdatenbanken in der Supply Chain

Die Lieferkette ist ein komplexes Netzwerk von Lieferanten, Herstellern, Händlern und Logistikdienstleistern, das den Waren- und Informationsfluss sichert.

Teaserbild ChatGPT: Häufige Fragen und Antworten
Blog 03.05.23

ChatGPT: Häufige Fragen und Antworten

Der Launch von ChatGPT, dem intelligenten Chatbot von OpenAI, hat große Wellen geschlagen. Wir haben im Blog häufige Fragen und Antworten zusammengefasst.

Blog

Deep Learning: Ein Beispiel aus dem öffentlichen Dienst

Automatische Bilderkennung hat das Potenzial, Wasserwirtschaftsverbände spürbar zu entlasten – und so beim Hochwasserschutz zu unterstützen. Ein Fallbeispiel.

Blog 05.11.24

Strategische Bedeutung von APIs in digitaler Transformation

Erfahren Sie, wie APIs Unternehmen Wettbewerbsvorteile verschaffen und die digitale Transformation beschleunigen. Mit praxisnahen Beispielen und Tipps zur Umsetzung.

Blog

So verändert Data Analytics die Industrie

Mit dem Einsatz von Data Analytics in der Industrie tun sich für Unternehmen zahlreiche neue Möglichkeiten auf.

Blog 16.05.24

In 8 Schritten zu AI-Innovationen im Unternehmen

Künstliche Intelligenz ist längst mehr als ein Schlagwort – sie schafft echten Business Value. Mit unserem achtstufigen Ansatz unterstützen wir Unternehmen auf dem Weg zur erfolgreichen AI-Nutzung.

Blog

Der Cloud vorgelagert: Edge Computing für Datenanalysen

Sicherheitsbedenken und Performance-Engpässe gestalten die Verarbeitung und Analyse von Daten in der Cloud zunehmend schwierig. So spricht einiges für eine Zwischenschicht: den Edge.

Blog 19.12.23

RAG: GenAI trifft Unternehmenswissen

In der Welt der generativen KI markiert Retrieval Augmented Generation den nächsten Evolutionsschritt. Textgeneratoren werden dabei um den Zugriff auf externe Informationsquellen angereichert.

Teaserbild zu OCR vs IDP (Intelligent Document Processing)
Blog 07.03.23

OCR vs IDP: Vorteile von Intelligent Document Processing

Intelligent Document Processing“ heißt ein neuer Ansatz in der IT. Er erlaubt die automatisierte Datenerfassung aus Geschäftsdokumenten.

Wissen

Deep Learning: Ein Beispiel aus dem öffentlichen Dienst

Automatische Bilderkennung hat das Potenzial, Wasserwirtschaftsverbände spürbar zu entlasten – und so beim Hochwasserschutz zu unterstützen. Ein Fallbeispiel.

Blog 19.02.25

Knowledge Graphs: vernetzte Daten als Innovationsmotor

Erfahren Sie, wie Knowledge Graphs Datensilos auflösen, Echtzeit-Analysen ermöglichen und AI-basierte Entscheidungen optimieren können.

Wissen 30.04.24

GPT & Co: Die besten Sprachmodelle für digitale Produkte

Welche LLM-Modelle meistern Ihre Herausforderungen am besten? Werfen Sie einen Blick auf die Ergebnisse und finden Sie Ihr ideales Sprachmodell!

Wissen 13.06.24

KI-gesteuerte Dokumentenverwaltung

Wie sich die Leistungsfähigkeit von Enterprise Content Management Systemen durch künstliche Intelligenz (KI) noch weiter steigern lässt.

Teaserbild zu OCR vs IDP (Intelligent Document Processing)
Wissen 07.03.23

OCR vs IDP: Vorteile von Intelligent Document Processing

Intelligent Document Processing“ heißt ein neuer Ansatz in der IT. Er erlaubt die automatisierte Datenerfassung aus Geschäftsdokumenten.

Blog 16.08.23

Microsoft Azure-Ressourcen automatisch skalieren

Im Blog stellen wir Ihnen Autoscale in Azure vor und zeigen, warum es sich lohnt, diese mit der automatischen Skalierung mit IBM Turbonomics zu kombinieren.

Referenz

Negotiation Bot: Effizient verhandeln & bis zu 15 % sparen

Wie gelingt es einem international erfolgreichen Technologiekonzern, seine Prozesse effizienter zu gestalten und den Einkauf spürbar zu entlasten? Die Antwort liefern die TIMETOACT GROUP und IBM.

Wissen 02.05.24

Das Potenzial der Datenkultur im Unternehmen ausschöpfen

Haben Sie schon einmal darüber nachgedacht, ob Ihr Unternehmen wirklich das volle Potenzial der Datenkultur ausschöpft? Stellen Sie sich einen Arbeitsplatz vor, an dem jeder Schritt, jede Entscheidung und jede Strategie auf fundierten und datengetriebenen Erkenntnissen basiert. Wo jeder Mitarbeiter das Vertrauen hat, sicher durch die digitale Landschaft zu navigieren. Unser neuer Deep Dive von Dr. Jan Hachenberger (engl. Sprache) beleuchtet die Welt der Datenkultur. Erfahren Sie, wie Sie gängige Mythen rund um datengetriebene Kulturen entlarven, die Grundpfeiler für eine erfolgreiche Datenkultur errichten und wertvolle Einblicke von Experten gewinnen können.

Header Blogbeitrag Artificial Intelligence
Blog 05.05.22

Artificial Intelligence (AI) mit Spurhalteassistent im Griff

Transparenz und Nachvollziehbarkeit von AI ist die größte Herausforderung für die Nutzung von Artificial Intelligence ✅ Lesen Sie unseren Blogbeitrag.

Blog 17.05.24

8 Tipps zur Entwicklung von AI-Assistenten

AI-Assistenten sind ein Hype, und viele Teams arbeiten mit Begeisterung an ihrer Umsetzung. Doch in Europa und den USA scheitern viele an dieser Herausforderung. Damit Ihnen das nicht passiert, haben